IPv6 Addressing

ISP Workshops

Last updated 22 August 2013

Where to get IPv6 addresses

Your upstream ISP

Africa

- AfriNIC http://www.afrinic.net
- Asia and the Pacific
 - APNIC http://www.apnic.net
- North America
 - ARIN http://www.arin.net
- Latin America and the Caribbean
 - LACNIC http://www.lacnic.net

Europe and Middle East

RIPE NCC – http://www.ripe.net/info/ncc

Internet Registry Regions

Getting IPv6 address space (1)

From your Regional Internet Registry

- Become a member of your Regional Internet Registry and get your own allocation
 Membership usually open to all network operators
- General allocation policies are outlined in RFC2050
 - RIR specific policy details for IPv6 allocations are listed on the individual RIR website
- Open to all organisations who are operating a network
- Receive a /32 (or larger if you will have more than 65k /48 assignments)

Getting IPv6 address space (2)

From your upstream ISP

- Receive a /48 from upstream ISP's IPv6 address block
- Receive more than one /48 if you have more than 65k subnets

■ If you need to multihome:

- Apply for a /48 assignment from your RIR
- Multihoming with provider's /48 will be operationally challenging
 - Provider policies, filters, etc

Using 6to4 for IPv6 address space

Some entities still use 6to4

- Not recommended due to operational problems
- Read http://datatracker.ietf.org/doc/draft-ietfv6ops-6to4-to-historic for some of the reasoning why
- FYI: 6to4 operation:
 - Take a single public IPv4 /32 address
 - 2002:<ipv4 /32 address>::/48 becomes your IPv6 address block, giving 65k subnets
 - Requires a 6to4 gateway
 - 6to4 is a means of connecting IPv6 islands across the IPv4 Internet

Nibble Boundaries

- IPv6 offers network operators more flexibility with addressing plans
 - Network addressing can now be done on nibble boundaries

• For ease of operation

Rather than making maximum use of a very scarce resource

• With the resulting operational complexity

- A nibble boundary means subnetting address space based on the address numbering
 - Each number in IPv6 represents 4 bits = 1 nibble
 - Which means that IPv6 addressing can be done on 4-bit boundaries

Nibble Boundaries – example

Consider the address block 2001:db8:0:10::/61

The range of addresses in this block are:

2001:0db8:0000:0010:0000:0000:0000 to

2001:0db8:0000:0017:ffff:ffff:ffff:ffff

- Note that this subnet only runs from 0010 to 0017.
- The adjacent block is 2001:db8:0:18::/61

2001:0db8:0000:0018:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff

The address blocks don't use the entire nibble range

Nibble Boundaries – example

- Now consider the address block 2001:db8:0:10::/60
 - The range of addresses in this block are:

2001:0db8:0000:0010:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:fffff

- Note that this subnet uses the entire nibble range, 0 to f
- Which makes the numbering plan for IPv6 simpler
 - This range can have a particular meaning within the ISP block (for example, infrastructure addressing for a particular PoP)

Addressing Plans – Infrastructure

- All Network Operators should obtain a /32 from their RIR
- Address block for router loop-back interfaces
 - Number all loopbacks out of one /64
 - /128 per loopback
- Address block for infrastructure (backbone)
 - /48 allows 65k subnets
 - /48 per region (for the largest multi-national networks)
 - /48 for whole backbone (for the majority of networks)
 - Infrastructure/backbone usually does NOT require regional/geographical addressing
 - Summarise between sites if it makes sense

Addressing Plans – Infrastructure

What about LANs?

/64 per LAN

What about Point-to-Point links?

- Protocol design expectation is that /64 is used
- /127 now recommended/standardised
 - http://www.rfc-editor.org/rfc/rfc6164.txt
 - (reserve /64 for the link, but address it as a /127)
- Other options:
 - /126s are being used (mimics IPv4 /30)
 - /112s are being used
 - Leaves final 16 bits free for node IDs
 - Some discussion about /80s, /96s and /120s too

Addressing Plans – Infrastructure

□ NOC:

- ISP NOC is "trusted" network and usually considered part of infrastructure /48
 - Contains management and monitoring systems
 - Hosts the network operations staff
 - take the last /60 (allows enough subnets)

Critical Services:

- Network Operator's critical services are part of the "trusted" network and should be considered part of the infrastructure /48
- For example, Anycast DNS, SMTP, POP3/IMAP, etc
 - **Take the second /64**
 - I (some operators use the first /64 instead)

Addressing Plans – ISP to Customer

Option One:

- Use ipv6 unnumbered
- Which means no global unicast ipv6 address on the pointto-point link
- Router adopts the specified interface's IPv6 address
 - Router doesn't actually need a global unicast IPv6 address to forward packets

```
interface loopback 0
ipv6 address 2001:db8::1/128
interface serial 1/0
ipv6 address unnumbered loopback 0
```

Addressing Plans – ISP to Customer

Option Two:

- Use the second /48 for point-to-point links
- Divide this /48 up between PoPs
- Example:
 - For 10 PoPs, dividing into 16, gives /52 per PoP
 - Each /52 gives 4096 point-to-point links
 - Adjust to suit!
- Useful if ISP monitors point-to-point link state for customers
 - Link addresses are untrusted, so do not want them in the first /48 used for the backbone &c
- Aggregate per router or per PoP and carry in iBGP (not ISIS/OSPF)

Customers get one /48

 Unless they have more than 65k subnets in which case they get a second /48 (and so on)

In typical deployments today:

- Several ISPs are giving small customers a /56 and single LAN end-sites a /64, e.g.:
 - /64 if end-site will only ever be a LAN
 - /56 for small end-sites (e.g. home/office/small business)
 - /48 for large end-sites
- This is another very active discussion area
- Observations:
 - Don't assume that a mobile endsite needs only a /64
 - Some operators are distributing /60s to their smallest customers!!

Consumer Broadband Example:

- DHCPv6 pool is a /48
 - DHCPv6 hands out /60 per customer
 - Which allows for 4096 customers per pool

Business Broadband Example:

- DHCPv6 pool is a /48
 - DHCPv6 hands out /56 per customer
 - Which allows for 256 customers per pool
- If BRAS has more than 256 business customers, increase pool to a /47
 - This allows for 512 customers at /56 per customer
- Increasing pool to /46 allows for 1024 customers
- BRAS announces entire pool as one block by iBGP

Business "leased line":

- /48 per customer
- One stop shop, no need for customer to revisit ISP for more addresses until all 65k subnets are used up
- Hosted services:
 - One physical server per vLAN
 - One /64 per vLAN
 - How many vLANs per PoP?
 - /48 reserved for entire hosted servers across backbone
 Internal sites will be subnets and carried by iBGP

Geographical delegations to Customers:

- Network Operator subdivides /32 address block into geographical chunks
- E.g. into /36s
 - Region 1: 2001:db8:1xxx::/36
 - Region 2: 2001:db8:2xxx::/36
 - Region 3: 2001:db8:3xxx::/36
 - etc
- Which gives 4096 /48s per region
- For Operational and Administrative ease
- Benefits for traffic engineering if Network Operator multihomes in each region

Sequential delegations to Customers:

- After carving off address space for network infrastructure, Network Operator simply assigns address space sequentially
- Eg:

Infrastructure:	2001:db8:0::/48
Customer P2P:	2001:db8:1::/48
Customer 1:	2001:db8:2::/48
Customer 2:	2001:db8:3::/48

• etc

 Useful when there is no regional subdivision of network and no regional multihoming needs Addressing Plans – Routing Considerations

- Carry Broadband pools in iBGP across the backbone
 - Not in OSPF/ISIS
- Multiple Broadband pools on one BRAS should be aggregated if possible
 - Reduce load on iBGP
- Aggregating leased line customer address blocks per router or per PoP is undesirable:
 - Interferes with ISP's traffic engineering needs
 - Interferes with ISP's service quality and service guarantees

Addressing Plans – Traffic Engineering

Smaller providers will be single homed

The customer portion of the ISP's IPv6 address block will usually be assigned sequentially

Larger providers will be multihomed

- Two, three or more external links from different providers
- Traffic engineering becomes important
- Sequential assignments of customer addresses will negatively impact load balancing

Addressing Plans – Traffic Engineering

- ISP Router loopbacks and backbone point-topoint links make up a small part of total address space
 - And they don't attract traffic, unlike customer address space
- Links from ISP Aggregation edge to customer router needs one /64
 - Small requirements compared with total address space
 - Some ISPs use IPv6 unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works

ISP fills up customer IP addressing from one end of the range:

2001:db8::/32

1234

ISP

Customer Addresses

Customers generate traffic

- Dividing the range into two pieces will result in one /33 with all the customers and the ISP infrastructure the addresses, and one /33 with nothing
- No loadbalancing as all traffic will come in the first /33
- Means further subdivision of the first /33 = harder work

Planned IP Addressing

- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Consider regional (geographical) distribution of customer delegated address space
- Don't forget to always announce an aggregate out of each link

Addressing Plans – Advice

Customer address assignments should not be reserved or assigned on a per PoP basis

- Follow same principle as for IPv4
- Subnet aggregate to cater for multihoming needs
- Consider regional delegation
- ISP iBGP carries customer nets
- Aggregation within the iBGP not required and usually not desirable
- Aggregation in eBGP is very necessary
- Backbone infrastructure assignments:
 - Number out of a single /48
 - Operational simplicity and security
 - Aggregate to minimise size of the IGP

Addressing Plans – Scheme

Looking at Infrastructure:

2001:db8::/32

•			,		
/64	2001:db8:0::/48		/60	2001:db8:1::/48 to 2001:db8:ffff::/48	
Loopbacks	Backbone Pt	P & LANs	NOC	Customers	
Alternative:					
2001:db8::/32					
				-	
<mark>/64</mark> 20	01:db8:0::/48	/60 2001	:db8:1::/48	2001:db8:2::/48 to 2001:db8:ffff::/48	
Loopbacks	Backbone PtP & LANs	NOC Cu	stomer PtP	Customers	

27

Addressing Plans Planning

- Registries will usually allocate the next block to be contiguous with the first allocation
 - (RIRs use a sparse allocation strategy industry goal is aggregation)
 - Minimum allocation is /32
 - Very likely that subsequent allocation will make this up to a /31 or larger (/28)
 - So plan accordingly

Addressing Plans (contd)

Document infrastructure allocation

- Eases operation, debugging and management
- Document customer allocation
 - Customers get /48 each
 - Prefix contained in iBGP
 - Eases operation, debugging and management
 - Submit network object to RIR Database

Addressing Tools

Examples of IP address planning tools:

- NetDot netdot.uoregon.edu (recommended!!)
- HaCi sourceforge.net/projects/haci
- Racktables racktables.org
- IPAT nethead.de/index.php/ipat
- freeipdb home.globalcrossing.net/~freeipdb/
- Examples of IPv6 subnet calculators:
 - ipv6gen code.google.com/p/ipv6gen/
 - sipcalc www.routemeister.net/projects/sipcalc/

IPv6 Addressing

ISP Workshops