Multihoming Case Study

ISP Workshops

Last updated 10 October 2007

Multihoming Case Study

Set of slides based on work assisting an ISP with their multihoming needs between 2000 and 2002

Should be taken as an indicative example only

Case Study

First Visit (2000)

Case Study – Requirements (1)

ISP needs to multihome:

- To AS5400 in Europe
- To AS2516 in Japan
- /19 allocated by APNIC
- AS 17660 assigned by APNIC
- IMbps circuits to both upstreams

Case Study – Requirements (2)

ISP wants:

- Symmetric routing and equal link utilisation in and out (as close as possible)
 - international circuits are expensive
- Has two Cisco 2600 border routers with 64Mbytes memory

Cannot afford to upgrade memory or hardware on border routers or internal routers

"Philip, make it work, please"

Case Study

Allocated /19 from APNIC

Circuit to AS5400 is 1Mbps, circuit to AS2516 is 1Mbps

Case Study

- Both providers stated that routers with 128Mbytes memory required for AS17660 to multihome
 - Those myths again ⊗
 - Full routing table is rarely required or desired
- Solution:
 - Accept default from one upstream
 - Accept partial prefixes from the other

First cut: Went to a few US Looking Glasses

- Checked the AS path to AS5400
- Checked the AS path to AS2516
- AS2516 was one hop "closer"
- Sent AS-PATH prepend of one AS on AS2516 peering

Refinement

- Did not need any
- First cut worked, seeing on average 600kbps inbound on each circuit
- Does vary according to time of day, but this is as balanced as it can get, given customer profile

First cut:

- Requested default from AS2516
- Requested full routes from AS5400
- Then looked at my Routing Report
 - Picked the top 5 ASNs and created a filter-list
 If 701, 1, 7018, 1239 or 7046 are in AS-PATH, prefixes are discarded
 - Allowed prefixes originated by AS5400 and up to two AS hops away
 - Resulted in 32000 prefixes being accepted in AS17660

Refinement

- 32000 prefixes quite a lot, seeing more outbound traffic on the AS5400 path
- Traffic was very asymmetric
 out through AS5400, in through AS2516
- Added the next 3 ASNs from the Top 20 list
 209, 2914 and 3549
- Now seeing 14000 prefixes
- Traffic is now evenly loadshared outbound
 Around 200kbps on average
 - Mostly symmetric

Case Study MRTG Graphs

Router A to AS5400

Router B to AS2516

```
router ospf 100
log-adjacency-changes
passive-interface default
no passive-interface Ethernet0/0
default-information originate metric 20
!
router bgp 17660
no synchronization
no bgp fast-external-fallover
bgp log-neighbor-changes
bgp deterministic-med
```

...next slide

```
neighbor 166.49.165.13 remote-as 5400
neighbor 166.49.165.13 descr eBGP multihop to AS5400
neighbor 166.49.165.13 ebgp-multihop 5
neighbor 166.49.165.13 update-source Loopback0
neighbor 166.49.165.13 prefix-list in-filter in
neighbor 166.49.165.13 prefix-list out-filter out
neighbor 166.49.165.13 filter-list 1 in
neighbor 166.49.165.13 filter-list 3 out
prefix-list in-filter deny rfc1918etc in
prefix-list out-filter permit 202.144.128.0/19
ip route 0.0.0.0 0.0.0.0 serial 0/0 254
```

...next slide

```
ip as-path access-list 1 deny 701
ip as-path access-list 1 deny 1
ip as-path access-list 1 deny 7018
ip as-path access-list 1 deny 1239
ip as-path access-list 1 deny 7046
ip as-path access-list 1 deny 209
ip as-path access-list 1 deny 2914
ip as-path access-list 1 deny 3549
ip as-path access-list 1 permit 5400$
ip as-path access-list 1 permit 5400 [0-9]+$
ip as-path access-list 1 permit 5400 [0-9]+ [0-9]+$
ip as-path access-list 1 deny .*
ip as-path access-list 3 permit ^$
```

```
router ospf 100
log-adjacency-changes
passive-interface default
no passive-interface Ethernet0/0
default-information originate
!
router bgp 17660
no synchronization
no auto-summary
no bgp fast-external-fallover
```

```
...next slide
```

bgp log-neighbor-changes bgp deterministic-med neighbor 210.132.92.165 remote-as 2516 neighbor 210.132.92.165 description eBGP peering neighbor 210.132.92.165 soft-reconfiguration inbound neighbor 210.132.92.165 prefix-list default-route in neighbor 210.132.92.165 prefix-list out-filter out neighbor 210.132.92.165 route-map as2516-out out neighbor 210.132.92.165 maximum-prefix 100 neighbor 210.132.92.165 filter-list 2 in neighbor 210.132.92.165 filter-list 3 out

...next slide

I

```
Case Study
Configuration Router B
```

```
prefix-list default-route permit 0.0.0.0/0
prefix-list out-filter permit 202.144.128.0/19
!
ip as-path access-list 2 permit _2516$
ip as-path access-list 2 deny .*
ip as-path access-list 3 permit ^$
!
route-map as2516-out permit 10
set as-path prepend 17660
.
```

Configuration Summary

Router A

- Hears full routing table throws away most of it
- AS5400 BGP options are all or nothing
- Static default pointing to serial interface if link goes down, OSPF default removed

Router B

- Hears default from AS2516
- If default disappears (BGP goes down or link goes down), OSPF default is removed

Case Study Summary

Multihoming is not hard, really!

- Needs a bit of thought, a bit of planning
- Use this case study as an example strategy
- Does not require sophisticated equipment, big memory, fast CPUs...

Case Study

Second Visit (2002)

Case Study – Current Status

■ ISP currently multihomes:

- To AS5400 in the UK
- To AS2516 in Japan
- /19 allocated by APNIC
- AS 17660 assigned by APNIC
- IMbps circuits to both upstreams

Case Study – Requirements

□ ISP wants:

- To add a new satellite connection, a 640K link to AS22351 in Germany to support the AS5400 link to UK
- Still want symmetric routing and equal link utilisation in and out (as close as possible)
 - international circuits are expensive
- Has upgraded to two Cisco 3725 border routers with plenty of memory
- Despite the working previous configuration with "sparse routing table", wanted full prefixes
- Talked them out of that, and here is how...

Case Study

Allocated /19 from APNIC

First cut: Went to a few US Looking Glasses

- Checked the AS path to AS5400
- Checked the AS path to AS2516
- Checked the AS path to AS22351
- AS2516 was one hop "closer" than the other two
- Sent AS-PATH prepend of one AS on AS2516 peering
- this is unchanged from two years ago

Refinement

- Needed some AS5400 seemed to be always preferred over AS22351
- AS5400 now supports RFC1998 style communities for customer use

see whois -h whois.ripe.net AS5400

- Sent AS5400 some communities to insert prepends towards specific peers
 Now saw some traffic on AS22351 link but not much
- Sent a /23 announcement out AS22351 link
 Now saw more traffic on AS22351 link

Results:

- Around 600kbps on the AS5400 link
- Around 750kbps on the AS2516 link
- Around 300kbps on the AS22351 link
- Inbound traffic fluctuates quite substantially based on time of day

Status:

Situation left pending monitoring by the ISP's NOC

First cut:

- Already receiving default from AS2516
- Receiving full routes from AS5400
- Requested full routes from AS22351 the only option
- Retained the AS5400 configuration
 - Discard prefixes which had top 5 ASNs in the path
- AS22351 configuration uses similar ideas to AS5400 configuration
 - But only accepted prefixes originated from AS22351 or their immediate peers

Results:

- Around 35000 prefixes from AS5400
- Around 2000 prefixes from AS22351
- Around 200kbps on both the AS5400 and AS2516 links
- Around 50kbps on the AS22351 link
- Outbound traffic fluctuates quite substantially based on time of day
- Status:
 - Situation left pending monitoring by the ISP's NOC

Case Study MRTG Graphs

router bqp 17660 no synchronization no bgp fast-external-fallover bgp log-neighbor-changes bgp deterministic-med neighbor 80.255.39.241 remote-as 22351 neighbor 80.255.39.241 description ebgp peer to AS22351 neighbor 80.255.39.241 send-community neighbor 80.255.39.241 prefix-list in-filter in neighbor 80.255.39.241 prefix-list out-filter-as22351 out neighbor 80.255.39.241 route-map as22351-out out neighbor 80.255.39.241 maximum-prefix 120000 95 warning-only neighbor 80.255.39.241 filter-list 3 in neighbor 80.255.39.241 filter-list 5 out

...next slide

neighbor 166.49.165.13 remote-as 5400 neighbor 166.49.165.13 description eBGP multihop to AS5400 neighbor 166.49.165.13 ebgp-multihop 5 neighbor 166.49.165.13 update-source Loopback0 neighbor 166.49.165.13 send-community neighbor 166.49.165.13 prefix-list in-filter in neighbor 166.49.165.13 prefix-list out-filter out neighbor 166.49.165.13 route-map as5400-out out neighbor 166.49.165.13 filter-list 1 in neighbor 166.49.165.13 filter-list 5 out ip prefix-list in-filter deny rfc1918 prefixes etc ip prefix-list out-filter permit 202.144.128.0/19 ip prefix-list out-filter-as22351 permit 202.144.128.0/19 ip prefix-list out-filter-as22351 permit 202.144.158.0/23

...next slide

```
ip as-path access-list 1 deny 701
ip as-path access-list 1 deny 1
ip as-path access-list 1 deny 7018
ip as-path access-list 1 deny 1239
ip as-path access-list 1 deny 7046
ip as-path access-list 1 permit 5400$
ip as-path access-list 1 permit 5400 [0-9]+$
ip as-path access-list 1 permit 5400 [0-9]+ [0-9]+$
ip as-path access-list 1 deny .*
ip as-path access-list 3 permit 22351$
ip as-path access-list 3 permit 22351 [0-9]+$
ip as-path access-list 3 deny .*
ip as-path access-list 5 permit ^$
route-map as5400-out permit 10
 set community 5400:2001 5400:2101 5400:2119 5400:2124 5400:2128
route-map as22351-out permit 10
```

router bgp 17660 no synchronization no auto-summary no bgp fast-external-fallover bgp log-neighbor-changes bgp deterministic-med neighbor 210.132.92.165 remote-as 2516 neighbor 210.132.92.165 descr eBGP Peering with AS2516 neighbor 210.132.92.165 send-community neighbor 210.132.92.165 prefix-list default-route in neighbor 210.132.92.165 prefix-list out-filter out neighbor 210.132.92.165 route-map as2516-out out neighbor 210.132.92.165 maximum-prefix 100 neighbor 210.132.92.165 filter-list 2 in neighbor 210.132.92.165 filter-list 5 out

...next slide

```
Case Study
Configuration Router B
```

```
prefix-list default-route permit 0.0.0.0/0
prefix-list out-filter permit 202.144.128.0/19
!
ip as-path access-list 2 permit _2516$
ip as-path access-list 2 deny .*
ip as-path access-list 5 permit ^$
!
route-map as2516-out permit 10
set as-path prepend 17660
.
```

Interesting Aside

- Prior to installation of the new 640kbps link, ISP was complaining that both 1Mbps links were saturated inbound
 - Hence the requirement for the new 640kbps circuit
- Research using NetFlow, cflowd and FlowScan showed that Kazaa was to blame!
 - Kazaa is a peer to peer file sharing utility
 - Consumes all available bandwidth
 - Found that many customers were using Kazaa for file sharing, saturating the links inbound

Interesting Aside

Solution

- A time of day filter which blocked Kazaa during working hours, 8am to 8pm
- Inbound and outbound ACLs on border routers had tcp/ 1214 filters added

```
access-list 100 deny tcp any any eq 1214 time-range OfficeHrs
access-list 101 deny tcp any any eq 1214 time-range OfficeHrs
!
time-range OfficeHrs
periodic weekdays 8:00 to 20:00
```

- The result: inbound traffic on external links dropped by 50%
- And complaints about "the 'net" being slow have reduced

Interesting Aside

Typical FlowScan graph – no longer showing the effects of Kazaa

Summary

- Multihoming solution with three links of different bandwidths works well
 - Fluctuates significantly during the day time, maybe reflecting users browsing habits?
 - NOC is monitoring the situation
 - NOTE: Full routing table is not required ③

Multihoming Case Study

ISP Workshops