Multihoming Complex Cases & Caveats

ISP Workshops

Last updated 6 October 2011

Complex Cases & Caveats

Complex Cases

- Multiple Transits
- Multi-exit backbone
- Disconnected Backbone
- IDC Multihoming
- Caveats
 - No default route on:
 - Private peer edge router
 - IXP peering router
 - Separating transit and local paths
 - Backup and non-backup
 - Avoiding backbone hijack

Complex Cases

Two Tier-1 upstreams, two regional upstreams, and local peers

- This is a complex example, bringing together all the concepts learned so far
- Connect to both upstream transit providers to see the "Internet"
 - Provides external redundancy and diversity the reason to multihome
- Connect to regional upstreams
 - Hopefully a less expensive and lower latency view of the regional internet than is available through upstream transit provider
- Connect to private peers for local peering purposes
- Connect to the local Internet Exchange Point so that local traffic stays local
 - Saves spending valuable \$ on upstream transit costs for local traffic

- Announce /19 aggregate on each link
- Accept partial/default routes from upstreams
 - For default, use 0.0.0/0 or a network which can be used as default
- Accept all routes from local peer
- Accept all partial routes from regional upstreams
- This is more complex, but a very typical scenario

Router A – local private peer

- Accept all (local) routes
- Local traffic stays local
- Use prefix and/or AS-path filters
- Use local preference (if needed)
- Router F local IXP peering
 - Accept all (local) routes
 - Local traffic stays local
 - Use prefix and/or AS-path filters

Router B – regional upstream

- They provide transit to Internet, but longer AS path than Tier-1s
- Accept all regional routes from them
 e.g. ^150_[0-9]+\$
- Ask them to send default, or send a network you can use as default

Set local pref on "default" to 60

Will provide backup to Internet only when direct Tier-1 links go down

Router E – regional upstream

- They provide transit to Internet, but longer AS path than Tier-1s
- Accept all regional routes from them
 e.g. ^160_[0-9]+\$
- Ask them to send default, or send a network you can use as default

Set local pref on "default" to 70

Will provide backup to Internet only when direct Tier-1 links go down

Router C – first Tier-1

Accept all their customer and AS neighbour routes from them

∎ e.g. ^130_[0-9]+\$

Ask them to send default, or send a network you can use as default

Set local pref on "default" to 80

Will provide backup to Internet only when link to second Tier-1 goes down

Router D – second Tier-1

- Ask them to send default, or send a network you can use as default
 - This has local preference 100 by default
- All traffic without any more specific path will go out this way

Tier-1 & Regional Upstreams, Local Peers: Summary

- Local traffic goes to local peer and IXP
- Regional traffic goes to two regional upstreams
- Everything else is shared between the two Tier-1s
- To modify loadsharing adjust what is heard from the two regionals and the first Tier-1
 - Best way is through modifying the AS-path filter

- What about outbound announcement strategy?
 - This is to determine incoming traffic flows
 - 19 aggregate must be announced to everyone!
 - /20 or /21 more specifics can be used to improve or modify loadsharing
 - See earlier for hints and ideas

What about unequal circuit capacity?

- AS-path filters are very useful
- What if upstream will only give me full routing table or nothing
 - AS-path and prefix filters are very useful

Complex Cases

Multi-exit backbone

Multi-exit backbone

- ISP with many exits to different service providers
 - Could be large transit carrier
 - Could be large regional ISP with a variety of international links to different continental locations
- Load-balancing can be painful to set up
 - Outbound traffic is often easier to balance than inbound

Multi-exit backbone

Multi-exit backbone Step One

How to approach this?

Simple steps

□ Step One:

- The IXP is easy!
- Will usually be non-transit so preferred path for all prefixes learned this way
- Outbound announcement send our address block
- Inbound announcement accept everything originated by IXP peers, high local-pref

Multi-exit backbone Step Two

- Where does most of the inbound traffic come from?
 - Go to that source location, and check Looking Glass trace and AS-PATHs back to the neighbouring ASNs
 - i.e. which of AS120 through AS170 is the closest to "the source"
- Apply AS-path prepends such that the path through AS140 is one AS-hop closer than the other ASNs
 - AS140 is the ISP's biggest "pipe" to the Internet
 - This makes AS140 the preferred path to get from "the source" to AS110

Multi-exit backbone Step Three

Addressing plan now helps

- Customers in vicinity of each of Router A, C and D addressed from contiguous address block assigned to each Router
- Announcements from Router A address block sent out to AS120 and AS130
- Announcements from Router C address block sent out to AS140 and AS150
- Announcements from Router D address block sent out to AS160 and AS170

Multi-exit backbone

Addressing Plan Assists Multihoming

Multi-exit backbone Step Four

Customer type assists zone load balancing

- Two customer classes: Commercial & Consumer
- Commercial announced on T3 links
- Consumer announced on STM-1 links
- Commercial
 - Numbered from one address block in each zone
- Consumer
 - Numbered from the other address block in each zone

Multi-exit backbone Example Summary (1)

Address block: Router A zone: Commercial: Consumer: Router C zone: Commercial: Consumer: Router D zone: Commercial: Consumer:

100.10.0.0/16 100.10.0.0/18 100.10.0.0/19 100.10.32.0/19 100.10.128.0/17 100.10.128.0/18 100.10.192.0/18 100.10.64.0/18 100.10.64.0/19 100.10.96.0/19

Multi-exit backbone

Example Summary (2)

- Router A announcement:
 - 100.10.0.0/16 with 3x
 AS-path prepend
 - 100.10.0/19 to AS130
 - 100.10.32.0/19 to AS120
- Router B

announcement:

100.10.0/16

Router C announcement:

- **100.10.0/16**
- 100.10.128.0/18 to AS150
- 100.10.192.0/18 to AS140
- Router D

announcement:

- 100.10.0.0/16 with 3x
 AS-path prepend
- 100.10.64.0/19 to AS170
- 100.10.96.0/19 to AS160

Multi-exit backbone Summary

■ This is an example strategy

- Your mileage will vary
- Example shows:
 - where to start,
 - what the thought processes are, and
 - what the strategies could be

Service Provider Multihoming

Disconnected Backbone

ISP runs large network

- Network has no backbone, only large PoPs in each location
- Each PoP multihomes to upstreams
- Common in some countries where backbone circuits are hard to obtain
- This is to show how it could be done
 - Not impossible, nothing "illegal"

Works with one AS number

- Not four no BGP loop detection problem
- Each city operates as separate network
 - Uses defaults and selected leaked prefixes for loadsharing
 - Peers at local exchange point

Router A Configuration

```
router bgp 100
```

```
network 121.10.0.0 mask 255.255.248.0
```

```
neighbor 122.100.0.1 remote-as 120
```

```
neighbor 122.100.0.1 description AS120 - Serial 0/0
```

neighbor 122.100.0.1 prefix-list default in

```
neighbor 122.102.0.1 prefix-list my-block out
```

```
neighbor 122.102.10.1 remote-as 110
```

```
neighbor 122.102.10.1 description AS110 - Serial 1/0
```

```
neighbor 122.102.10.1 prefix-list rfc1918-sua in
```

```
neighbor 122.102.10.1 prefix-list my-block out
```

```
neighbor 122.102.10.1 filter-list 10 in
```

...continued on next page...

I

```
ip prefix-list my-block permit 121.10.0.0/21
ip prefix-list default permit 0.0.0.0/0
!
ip as-path access-list 10 permit ^(110_)+$
ip as-path access-list 10 permit ^(110_)+_[0-9]+$
!...etc to achieve outbound loadsharing
!
ip route 0.0.0.0 0.0.0.0 Serial 1/0 250
ip route 121.10.0.0 255.255.248.0 null0
```

Peer with AS120

- Receive just default route
- Announce /22 address
- Peer with AS110
 - Receive full routing table filter with AS-path filter
 - Announce /22 address
 - Point backup static default distance 252 in case AS120 goes down

Default ensures that disconnected parts of AS100 are reachable

- Static route backs up AS120 default
- No BGP loop detection relying on default route
- Do not announce /19 aggregate
 - No advantage in announcing /19 and could lead to problems

IDC Multihoming

IDC Multihoming

IDCs typically are not registry members so don't get their own address block

Situation also true for small ISPs and "Enterprise Networks"

Smaller address blocks being announced

- Address space comes from both upstreams
- Should be apportioned according to size of circuit to upstream
- Outbound traffic paths matter

Two Upstreams, Two Local Peers IDC

Assigned /24 from AS130 and /23 from AS140. Circuit to AS130 is 2Mbps, circuit to AS140 is 4Mbps
IDC Multihoming

Router A and B configuration

- In: Should accept all routes from AS120 and AS150
- Out: Should announce all address space to AS120 and AS150
- Straightforward

IDC Multihoming

Router C configuration

- In: Accept partial routes from AS130
 e.g. ^130_[0-9]+\$
- In: Ask for a route to use as default
 set local preference on default to 80
- Out: Send /24, and send /23 with AS-PATH prepend of one AS

IDC Multihoming

Router D configuration

- In: Ask for a route to use as default
 Leave local preference of default at 100
- Out: Send /23, and send /24 with AS-PATH prepend of one AS

IDC Multihoming Fine Tuning

- For local fine tuning, increase circuit capacity
 - Local circuits usually are cheap
 - Otherwise...

For longer distance fine tuning

- In: Modify as-path filter on Router C
- Out: Modify as-path prepend on Routers C and D
- Outbound traffic flow is usual critical for an IDC so inbound policies need to be carefully thought out

IDC Multihoming Other Details

Redundancy

- Circuits are terminated on separate routers
- Apply thought to address space use
 - Request from both upstreams
 - Utilise address space evenly across IDC
 - Don't start with /23 then move to /24 use both blocks at the same time in the same proportion
 - Helps with loadsharing yes, really!

IDC Multihoming Other Details

What about failover?

- /24 and /23 from upstreams' blocks announced to the Internet routing table all the time
- No obvious alternative at the moment
 - Conditional advertisement can help in steady state, but subprefixes still need to be announced in failover condition

Separating Transit and Local Paths

Common problem is separating transit and local traffic for BGP customers

Transit provider:

- Provides internet access for BGP customer over one path
- Provides domestic access for BGP customer over another path
- Usually required for commercial reasons
 - Inter-AS traffic is unmetered
 - Transit traffic is metered

- Assume Router X is announcing 192.168/16 prefix
- Router C and D see two entries for 192.168/16 prefix:

RouterC#show ip bgp				
Network	Next Hop	Metric LocPrf Weight	Path	
* i192.168.0.0/16	10.0.1.1	100 0	120 i	
*>i	10.0.1.5	100 0	120 i	

 BGP path selection rules pick the highest next hop address

- So this could be Router A or Router B!
- No exit path selection here...

There are a few solutions to this problem

- Policy Routing on Router A according to packet source address
- GRE tunnels (gulp)
- Preference is to keep it simple
 - Minor redesign and use of BGP weight is a simple solution

Transit and Local paths (Network Revision)

- Router B hears 192.168/16 from Router Y across the IXP
- Router C hears 192.168/16 from Router Z across the private peering link
- Router B sends 192.168/16 by iBGP to Router C:

RouterC#show ip bgp				
Network	Next Hop	Metric LocPrf	Weight Path	
*> 192.168.0.0/16	10.1.5.7	100	0 120 i	
* i	10.0.1.5	100	0 120 i	

- Best path is by eBGP to Router Z
 - So Internet transit traffic to AS120 will go through private peering link

- Router D hears prefix by iBGP from both Router B and Router C
- BGP best path selection might pick either path, depending on IGP metric, or next hop address, etc
- Solution to force local traffic over the IXP link:
 - Apply high local preference on Router B for all routes learned from the IXP peers

RouterD#show ip bgp				
Network	Next Hop	Metric LocPrf	Weight Path	
* i192.168.0.0/16	10.0.1.3	100	0 120 i	
*>i	10.0.1.5	120	0 120 i	

- High local preference on B is visible throughout entire iBGP
 - Including on Router C

RouterC#show ip bgp					
	Network	Next Hop	Metric LocPrf	Weight P	ath
*	192.168.0.0/16	10.1.5.7	100	0 1	20 i
*>i	Ĺ	10.0.1.5	120	0 1	20 i

 As a result, Internet traffic now goes through the IX, not the private peering link as intended

Solution: Use BGP weight on Router C for prefixes heard from AS120:

RouterC#show ip bgp				
Network	Next Hop	Metric LocPrf	Weight	Path
*> 192.168.0.0/16	10.1.5.7	100	50000	120 i
* i	10.0.1.5	120	0	120 i

- So Router C prefers private link to AS120 for traffic coming from Internet
- Rest of AS110 prefers Router B exit through the IXP for local traffic

Transit and Local paths Summary

- Transit customer private peering connects to Border router
 - Transit customer routes get high weight
- Local traffic on IXP peering router gets high local preference
- Internet return traffic goes on private interconnect
- Domestic return traffic crosses IXP

Backup and Non-backup

Transit and Local paths Backups

For the previous scenario, what happens if private peering link breaks?

- Traffic backs up across the IXP
- What happens if the IXP breaks?
 - Traffic backs up across the private peering
- Some ISPs find this backup arrangement acceptable
 - It is a backup, after all

Transit and Local paths IXP Non-backup

IXP actively does not allow transit
 ISP solution:

- 192.168/16 via IX tagged one community
- 192.168/16 via PP tagged other community
- Using community tags, iBGP on IX router (Router B) does not send 192.168/16 to upstream border (Router C)
 - Therefore Router C only hears 192.168/16 via private peering
 - If the link breaks, backup is via AS110 and AS120 upstream ISPs

Transit and Local paths IXP Non-backup

Transit and Local paths Private Peering link Non-backup

- With this solution, a breakage in the IX means that local peering traffic will still back up over private peering link
 - This link may be metered
- AS110 Solution:
 - Router C does not announce 192.168/16 by iBGP to the other routers in AS110
 - If IX breaks, there is no route to AS120
 - Unless Router C is announcing a default route
 - Whereby traffic will get to Router C anyway, and policy based routing will have to be used to avoid ingress traffic from AS110 going on the private peering link

Transit and Local paths Private Peering link Non-backup

Transit and Local paths Summary

- Not allowing BGP backup to "do the right thing" can rapidly get messy
- But previous two scenarios are requested quite often
 - Billing of traffic seems to be more important than providing connectivity
 - But thinking through the steps required shows that there is usually a solution without having to resort to extreme measures

Avoiding "Backbone Hijack"

Backbone Hijacks

□ Can happen when peering ISPs:

- are present at two or more IXPs
- have two or more private peering links
- Usually goes undetected
 - Can be spotted by traffic flow monitoring tools
- Done because:
 - "Their backbone is cheaper than mine"
- Caused by misconfiguration of private peering routers

Avoiding "Backbone Hijack"

AS110 peering routers at the IXPs should only carry AS110 originated routes

- When AS120 points static route for an AS120 destination to AS110, the peering routers have no destination apart from back towards AS120, so the packets will oscillate until TTL expiry
- When AS120 points static route for a non-AS110 destination to AS110, the peering routers have no destination at all, so the packet is dropped

Avoiding "Backbone Hijack"

Same applies for private peering scenarios

- Private peering routers should only carry the prefixes being exchanged in the peering
- Otherwise abuses are possible
- What if AS110 is providing the full routing table to AS120?
 - AS110 is the transit provider for AS120

AS120 deliberately uses AS110's backbone as transit path between two points in the local network

Avoiding "Backbone Hijack"

Router C carries a full routing table on it

- So we can't use the earlier trick of only carrying AS110 prefixes
- Reverse path forwarding check?
 - But that only checks the packet source address, not the destination and the source is fine!

BGP Weight

- Recall that BGP weight was used to separate local and transit traffic in the previous example
- If all prefixes learned from AS120 on Router C had local weight increased, then destination is back out the incoming interface
- And the same can be done on Router B

Avoiding "Backbone Hijack" Summary

- These are but two examples of many possible scenarios which have become frequently asked questions
- Solution is often a lot simpler than imagined
 - BGP Weight, selective announcement by iBGP, simple network redesigns...

Summary

Complex Cases

- Multiple Transits
- Multi-exit backbone
- Disconnected Backbone
- IDC Multihoming
- Caveats
 - No default route on:
 - Private peer edge router
 - IXP peering router
 - Separating transit and local paths
 - Backup and non-backup
 - Avoiding backbone hijack

Multihoming Complex Cases & Caveats

ISP Workshops